学習日: 月 日() 中学校数学 2B5-3

学 年

2年

【図形の性質と証明】③正三角形

年 組 氏名

_	-	<u> </u>	形上	八石		
 △ABC が正三角形になるためには、3辺 	AB, BC,	CA R	き3つの)内角 <i>∠</i> A,	∠B,	∠C の間にどんな関
があればいいですか。4通り以上の異なる式	で示しな	さい。	200	式を組み合	わせて	てもよい。

② 次の図で、 $\triangle ABC$, $\triangle ECD$ は正三角形です。このとき、AD=BE であることを証明します。

<仮定><結論><証明>を完成させなさい。

<仮定> ______

<結論> _____

<証明>



学年

2年

【図形の性質と証明】③正三角形

年 組 氏名

(Point) 正三角形について

〔定義〕3辺が等しい三角形を正三角形という。

〔定理(性質)〕・正三角形の3つの角は等しい。

・3つの角が等しい三角形は正三角形である。

ある三角形が正三角形であるためには、3辺が等しいか、3つの角が等しいかのどちらかがいえればいい。

1 (解答例)

AB = BC = CA 3辺が等しければ正三角形である。

 $\angle A = \angle B = \angle C$ 3つの内角が等しい三角形は正三角形である。

 $\angle A = \angle B = 60^{\circ}$ 三角形の内角の和から $\angle C$ も 60° になり、3つの内角が等しくなる。

AB = AC, $\angle A = 60^{\circ}$ $\angle B \angle C = 60^{\circ}$ になり、3つの内角が等しくなる。

AB = AC, $\angle B = 60^{\circ}$ この場合も、 $\angle A \angle C$ もともに 60° になる。

AB=AC, $\angle A=\angle B$ AB=AC $\angle B=\angle C$ $\angle B$ $\angle A$ $\angle B$ $\angle A$ $\angle A$

|2| <仮定> $\triangle ABC$ 、 $\triangle ECD$ は正三角形

<結論> AD=BE

<証明> (解答例)

 $\triangle ACD E \triangle BCE ECONT$

仮定より、AC = BC ······①

仮定より、CD = CE ·······②

また、正三角形の1つの角なので、∠ACB= ∠DCE=60°

 $\angle ACD = \angle DCE + \angle ACE = 60^{\circ} + \angle ACE = \cdots$

 $\angle BCE = \angle ACB + \angle ACE = 60^{\circ} + \angle ACE \cdots 4$

(3), (4) (4), (4) (4) (5) (5) (6) (7

したがって、①,②,⑤より、2辺とその間の角がそれぞれ等しいから

 $\triangle ACD \equiv \triangle BCE$

合同な三角形の対応する辺はそれぞれ等しいので、AD = BE