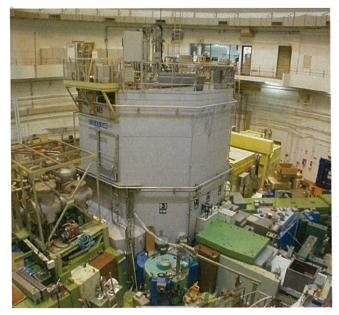
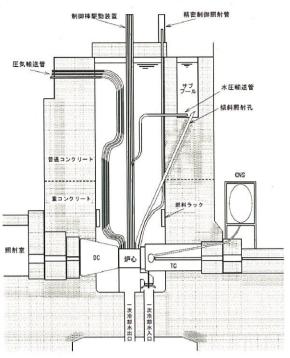
京都大学研究用原子炉(KUR)の 安全性について

- ・ ウラン燃料の核分裂で発生する中性子を利用するための原子炉
- ・ 濃縮ウラン燃料を軽水 (H_2O) を満たしたタンク中に配列して炉心を構成
- 1964年6月25日に初臨界、同年8月17日に1MW達成
- 1968年7月16日に5MW達成(出力アップ)
- 2010年5月26日より低濃縮ウラン燃料を使用

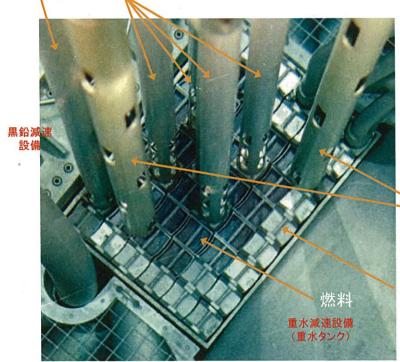

(KUR: Kvoto University Research Reactor)


研究炉と発電炉の比較

	研究用原子炉KUR	福島第一発電所
目的	中性子発生(研究用)	発電 停止後も長期 にわたる燃料 の冷却が必要
運転状態	低出力、低温、低圧停止後の燃	高出力、高温、高圧
熱出力(kW)	5000 料の冷却は 短期間で可	1号機:138万 2~5号機:238万 6号機:329万
燃料(集合)体の重さ(kg)	約6	約250
ウラン装荷量(トン)	最大0.037	1号機:69 2~5号機:94 6号機:132
原子炉内の水量(トン)	約25	約400(6号機の場合)
運転中の温度(℃)	約55以下	約285
運転中の圧力	大気圧	約70気圧 2

KURの構造

原子炉断面図



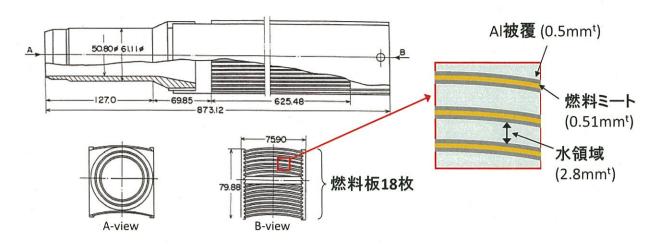
3

微調整用制御棒

KUR: 炉心

粗調整用制御棒 (緊急時には0.6秒で落下)

			The	rma	al Co	lun	nn			
\	1	2	3	4	5	6	7	8	9	/
,	R	Reg	F	F	F	F	F*	Ir*	R*	
5	R	F	F	A	F	В	F	Pl	R	
t	R	R	F	F	Ну	F	F	F	R	
-	R	R	F	C	F	D	F	F	Pn	
£	R	R	Н	F	F	F	F	R	Pn	
	P1	DI	D	D	D	D	D	D	Dn	


Graphite

Heavy water Thermal Column

核計装管 (中性子検出器)

反射体 (黒鉛)

KURの燃料(標準燃料)

5

原子炉安全確保の3原則

· 停 止

制御棒を挿入すること等により、核分裂連鎖反応を停止する。

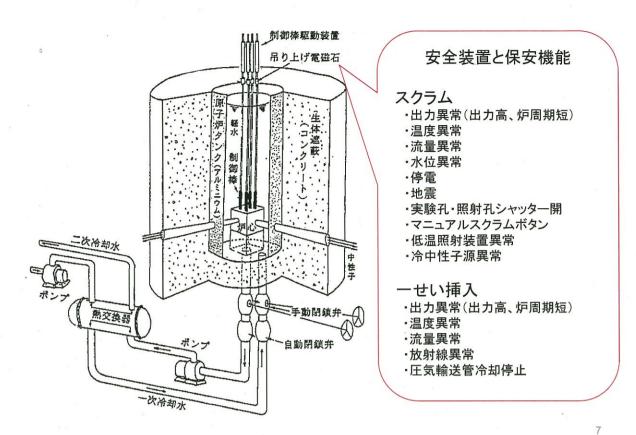
KUR:制御棒4本が異常検知から0.6秒で炉心内に落下。

· 冷 却

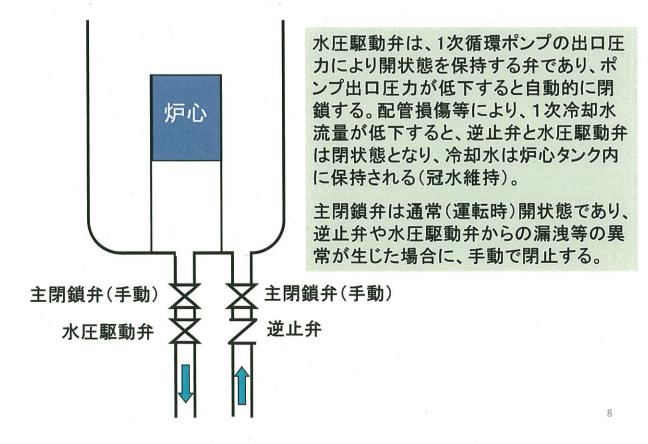
燃料が溶けたりしないように、十分に冷却する。

KUR: 炉心タンク内の水が無くならないようにする。

(冠水維持: 3日程度)

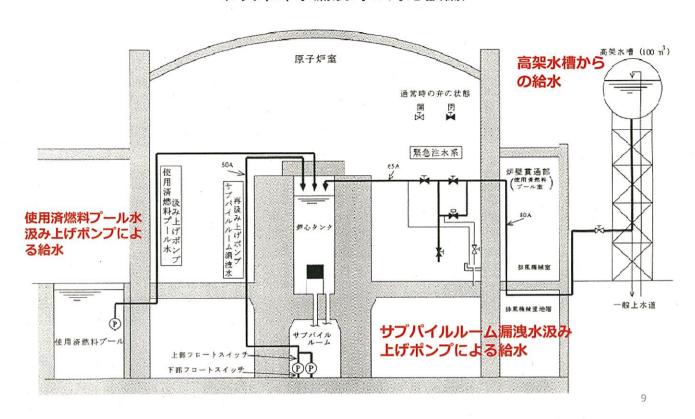

閉じ込め

放射性物質が外部へ漏れないように、閉じ込める。

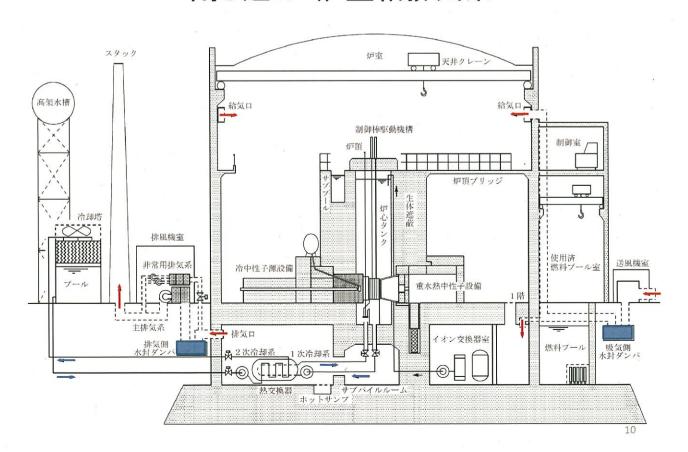

KUR:通常の換気系を閉止。非常用排気系のフィルタを通りて小りずつ排出

を通して少しずつ排出。

停止:スクラムと一せい挿入



冷却:配管損傷時の冠水維持



冷却:緊急注水系

(1次冷却水漏洩時の対応設備)

閉じ込め: 炉室給排気系

東電福島第一原発事故への対応

- 外部電源喪失への対応
 - 停止、冠水維持には電源は不要
 - 非常用発電機及び無停電電源の作動
 - KUCA用非常用発電機からの受電
- 冷却(冠水維持)機能喪失への対応
 - 緊急注水系による注水
 - 消火栓、消防ポンプからの注水
- さらなる安全性向上に向けて
 - 水槽、可搬式消防ポンプ、可搬式発電機

_

設備の点検等

- 停止、冷却、閉じ込め機能を有する設備について 毎年の施設定期(自主)検査にて点検・作動確認を 実施(赤字の設備は、毎月1回点検)
 - 制御棒駆動機構、安全保護回路
 - 冷却系の弁、配管
 - 緊急注水系
 - 炉室給排気系、非常用排気系、炉室気密性
 - 非常用電源
- 保全計画に基づく設備の保守・点検
 - 炉心タンク健全性調査
 - 炉室建屋、生体遮へい保守点検
 - 1次冷却水用配管、弁、ポンプ分解検査 など