排出量等の削減対策事例

- 塗装の工夫による排出量の抑制-

- 平成25年3月15日: 阿倍野区民センター
- 日本塗装機械工業会
- (工業塗装高度化協議会)
- 平野克己

講演要旨

• 塗装分野でもVOCの30%削減は達成されたが、 環境問題(光化学スモッグなど)は未解決。

• さらに「VOC削減」に対する自主的な取り組みには関係者の共通意識が必要。

最終的には現場のコストダウンにつながる対策 が必要。

目次

- 1.「VOC削減」の意味の再確認
- 2. これまでのVOC削減対策の整理と評価 (処理方式情報、現場でのアドバイザー 経験等の集約)
- 3. 今後の具体的取り組みの提案 (関係者・団体の参画)

1.1「30%削減目標達成」

• 環境省の目標

「2010年末までに 2000年基準で VOCを30%削減」

- 日本全体「30%削減達成!」
- 日本塗料工業会「達成」

日本工業塗装組合連合会

「達成」

塗料生産量 20%減

実質は?

1.2 業界全体での取り組み 「工業塗装高度化協議会」

- 参加者•団体
- 日本工業塗装高度化協議会
- 日本パウダーコーティング協同組合
- 日本塗装機械工業会
- (塗料•塗装報道関係者)
- (東京都環境局、産業技術開発センター他)
- 「VOCの今後の取組みについて」
- 参照:CEMAホームページ
- http://cosmos.amris.co.jp/cema/documents/index.html

1.3 目標達成で終わりか

- 問題点
- 1.「自主的取り組み」は継続させるのか?
- 2. 今後、さらに削減の必要は?
- 3.30%削減で光化学スモッグ警報は?
- 4. 30%削減で、「塗装環境は変わったか」?
- <u>5. VOCは塗装環境で何が問題か?</u> (3K職場のイメージは変わったか?)

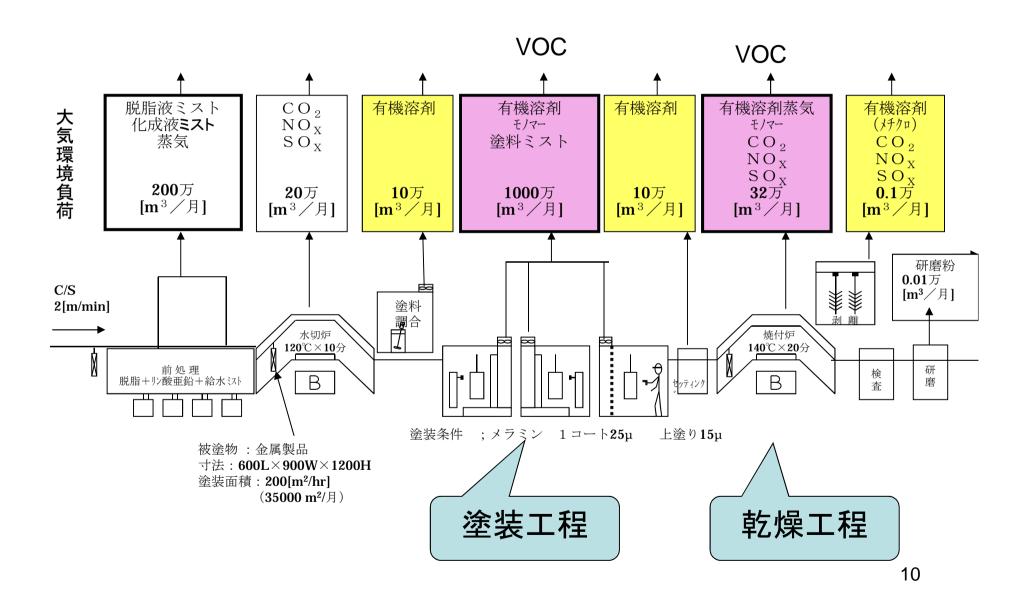
1.4 塗装分野での自主的取組みの割合

	規制対象施設 自主的取組み	
塗装 施設	785 (0.7%)	100,000 99%
排出量(年)	3万トン(推定)	35万トン(推定)
乾燥施設	529 (0.9%)	60,000 99%
排出量(年)	0.5万トン(推定)	10万トン(推定)

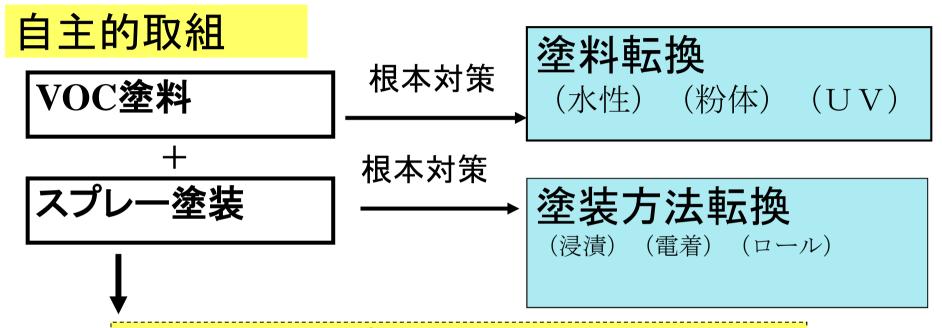
1.5 VOCの塗装現場での問題

1. 大気排出によるVOC、悪臭の影響

• 2. 塗装現場での作業者への影響


1.6 VOCに対する基本的な考え方

- VOCは、大気汚染、悪臭の原因であり 法規制に準じていく
- VOCは作業者(人間)にとっても、 潜在的な有害性を持っている。



- *塗装現場からのVOC削減は継続する
 *VOCゼロの塗装現場を目指す

2.1 塗装ラインから大気への環境負荷一覧

2.2 これまでの塗装分野での VOC対策の整理と評価(法規制以外)

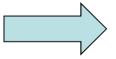
VOC塗料でスプレー方式のままでの対策

使用量削減(現場での工夫)

(塗装機変更) (塗料・溶剤回収) (色替回数減少)等々ポイント ①設備投資が小額

②塗装費用のコストダウン

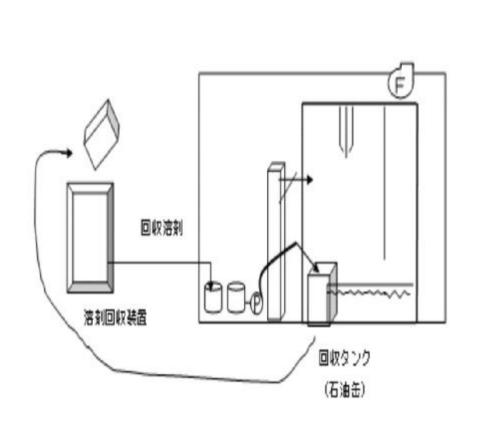
2.3 塗装現場でのVOC削減

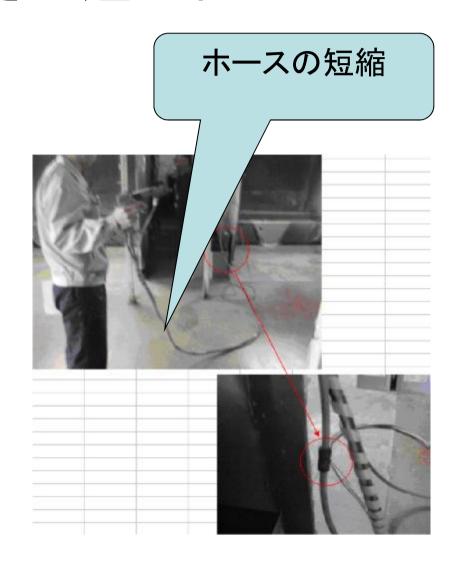

- ハード面での対策
- (一例)
- 洗浄槽の蓋
- ホース長さの短縮
- 高効率塗装機の導入
- 溶剤再生装置の導入

- ソフト面での対策
- (一例)
- 歩留まりの向上
- 適正使用量での調合
- 適正な材料発注
- 塗装方式の見直し
- 洗浄方式の見直し

参照: VOC排出抑制に向けた近畿地域ネットワークについて

2.4 洗浄槽の蓋




50ppm

10ppm

2.5 ホース長さの適正化

2.6 効果は数値、コストで

(10回の色替えで1本当たり)

改善前改善後塗料ホース5m×10回3.5m×10回塗料廃棄量2600g1900g塗料コスト1570円1140円

VA

430円

2.7 歩留まりの向上

• 不良率の改善(原因:ゴミブツが圧倒的に多い)

現場調査 🕽 不良品の解析 🕽 原因と対策

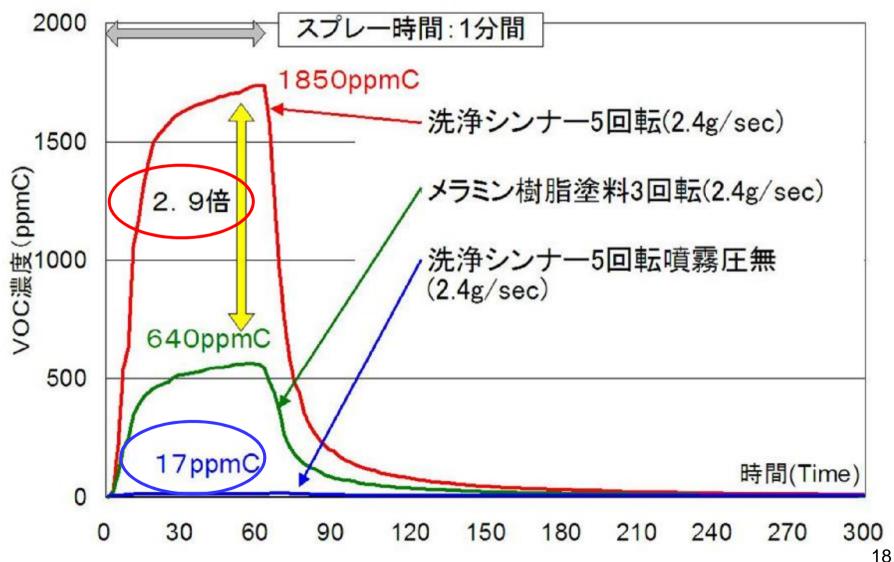
歩留まりが90%から93%に向上

効果の測定(毎月の効果) 塗料:100万円 →97万円 / 4万円

これに掛かる塗装費:材料代の3倍として

12万円

2.8 洗浄(色替)工程の取組み理由


- (1) 洗浄シンナの高騰
- ① 15~25% 価格アップ
- ② 洗浄・色替回数が多いほど

生産コストへの影響が大きい

- (2) 洗浄時のVOC排出の割合が大きい
- ① VOC測定濃度(排気ダクト)が洗浄時にMAX(工拳連測定)
- ② 実験確認(協力:東京都産業技術研究所)

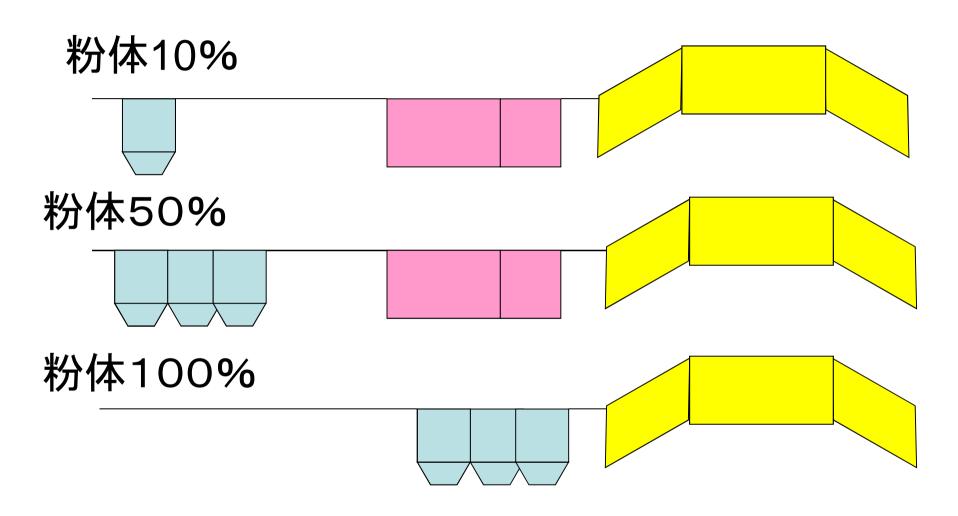
2.9 シンナー噴霧時のVOC排出濃度

塗装時に比べ3倍 霧化エア=0(ゼロ)でVOC排出激減

2.10 色別ロット塗装

- 現状:1日の色替え回数の減少ができないか
- (1ガン当たり:色替えの都度:30gのシンナーと同量 の塗料を廃棄)
- 調査:1日の平均を調査
- (6~15回)平均10回 → 目標:8回(2割減)
- 方法 取組み塗装品を色別に仕分けできないか 小ロットはまとめて塗装
- 結果評価

削減シンナー、塗料: 各60g(1日)コスト:100円


2.11 東京都VOC対策ガイド(工業塗装現場)

調色、調合	色替え方式・調色順序の見直し		
塗装	スプレーガンのタイプ選択による塗着効率の向上		
	スプレー作業の改善による塗着効率の向上		
	研修による塗装技能向上		
	塗装ブースの風速調整		
	局所排気装置の設置・制御風速の調整		
	室内環境改善による製品の歩留まり向上		
	塗料の供給配管の見直し		
	塗料の供給方式の見直し		
器具洗浄	交換・洗浄作業における揮発防止		
保管	保管・貯蔵における揮発防止		

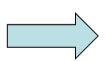
2.12 VOC削減方策のコスト増減(原単位)

		_ コストダウン コストアッフ
方策	削減率	50円 10円 10円 50円
ブース脱臭	70(%)	
炉脱臭	30	
粉体化	95	
水性化	70	
ハイソリッド	10	
洗浄方法	10	
塗着効率	20	
歩留向上	20	
		設備償却

2.13 粉体塗装の取込み

2.14 一部環境塗料対応した場合 120円/m²が?

現行	ハイソリッド化	粉体化	水性化
設備改造	ハイソリッド用	粉体塗装機(手動)	水性塗装機(手動)
	ガン	簡易ブース	
(設備投資)	50万円	1000 万円	200 万円
(償却費)	1 円/m ²	8 円/m ²	2円/m²
(維持費)	0 円/m ²	0 円/m ²	0 円/m ²
塗料代/月	150 万円	160 万円	180 万円
150万円	43 円/m ²	46 円/m ²	52 円/m ²
塗装代/月	420 万円	430 万円	450 万円
420万円	120 円/m ²	123 円/m ²	129 円/m ²
m ² 当り			
120円	121 円	131 円	131 円 ²³
増減率	1 %	9 %	9 %


3.1 今後のVOC対策

行政の指針・指導

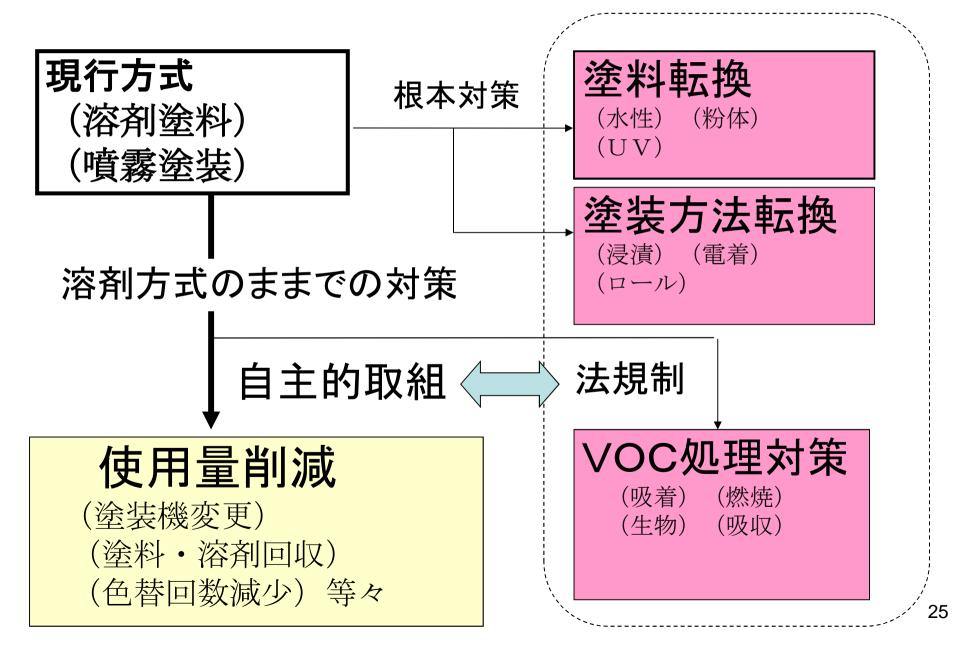
(環境省)

(経済産業省)

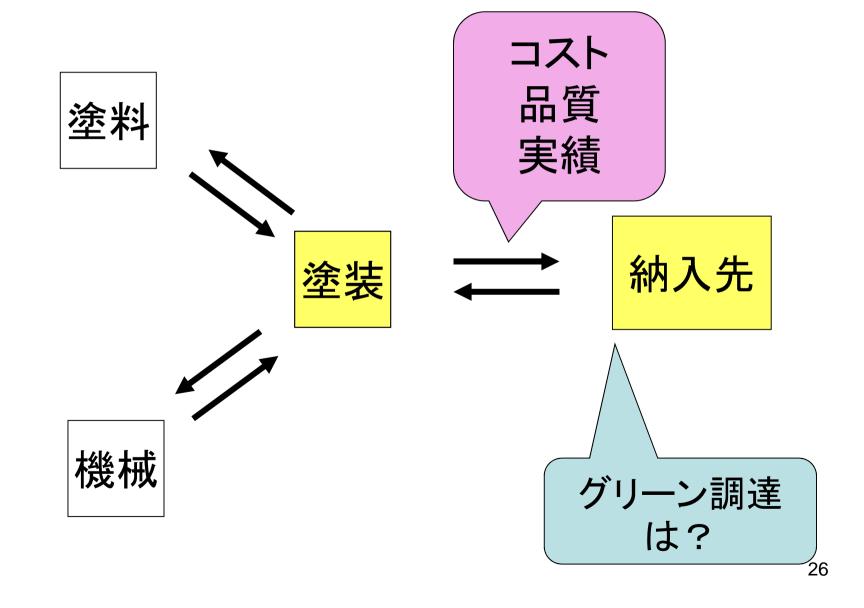
(地方自治体)

法の遵守

(主に大手企業)



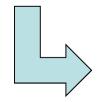
(主に中小企業)



業界全体としての取組み

3.2 塗装のVOC対策の概要

3.3「VOC対策製品」の納入課題


3.4 行政への期待

- VOC対策の後押し
- 融資▪税制
- 普及活動

- グリーン調達の実施
- 塗料・塗装での基準

3.5 日本塗装機械工業会とは

> CEMAホームページに[VOC集大成]を掲載 VOC処理装置の商品カタログ・技術資料・発表資料 http://www.cema-net.com/

環境対応は?

工業塗装高度化協議会 (環境技術分科会)